Keliling lingkaran tersebut adalah titik-titik cm

Keliling lingkaran tersebut adalah titik-titik cm

Lingkaran adalah bangun datar dua dimensi dibentuk oleh himpunan semua titik yang mempunyai jarak sama dari suatu titik tetap.

  • Pusat lingkaran (P): Titik tetap pada lingkaran disebut dengan pusat lingkaran.
  • Jari-jari (r): jarak titik lainnya terhadap pusat lingkaran disebut dengan jari-jari lingkaran.
  • Garis lengkung: Himpunan semua titik lingkaran kemudian membentuk garis lengkung yang menjadi keliling lingkaran.
  • Diameter (d): garis yang ditarik dari dua titik pada garis lengkung dan melewati titik pusat disebut dengan diameter (d). Diameter lingkaran mempunyai panjang 2 × r.
  • phi (π):
    nilai perbandingan antara keliling dan diameter lingkaran selalu konstan yaitu 3,14159 (dibulatkan 3,14) atau 22/7. Nilai ini diperoleh dari Keliling ÷ Diameter = phi.

B. Rumus Luas, Jari-Jari, Diameter, dan Keliling Lingkaran

Nama Rumus
Diameter (d) d = 2 × r
Jari-jari (r) r = d ÷ 2
Luas (L) L =
π
× r × r
L =
π
× r²
Keliling (Kll) Kll =
π
× d
Kll =
π
× 2 × r
Mencari (r)

Catatan:
Untuk mempermudah penggunaan nilai
phi (π)
dalam perhitungan manual, gunakan nilai 22/7 untuk jari-jari kelipatan 7 dan nilai 3.14 untuk jari-jari bukan kelipatan 7.

Contoh 1: Menggunakan Rumus Keliling Lingkaran dengan Diameter

Hitunglah keliling lingkaran dengan diameter 14 cm!

Diketahui:

d = 14 cm

Ditanya:

Keliling lingkaran!

Penyelesaian:

Jadi, keliling lingkaran tersebut adalah 44 cm.

Hitunglah keliling lingkaran dengan jari-jari 3 cm!

Diketahui:

r = 3 cm

Ditanya:

Keliling lingkaran!

Penyelesaian:

Jadi, keliling lingkaran tersebut adalah 18,84 cm.

Contoh 3: Menggunakan Rumus Luas Lingkaran dengan Jari-Jari

Hitunglah luas lingkaran dengan jari-jari 7 cm!

Diketahui:

r = 7 cm

Ditanya:

Luas lingkaran!

Penyelesaian:

Jadi, luas lingkaran tersebut adalah 154 cm².

Contoh 4: Menggunakan Rumus Luas Lingkaran dengan Diameter

Hitunglah luas lingkaran dengan diameter 8 cm!

Diketahui:

d = 8 cm

Ditanya:

Luas lingkaran!

Penyelesaian:

Karena rumus luas lingkaran menggunakan jari-jari (r), sehingga diperoleh

r = d ÷ 2
r = 8 cm ÷ 2 = 4 cm

Kemudian dilanjutkan dengan menghitung luas lingkaran,

Jadi, luas lingkaran tersebut adalah 50,24 cm².

Contoh 5: Mencari Diameter dengan Rumus Jari-Jari Lingkaran jika diketahui Kelilingnya

Hitunglah jari-jari dan diameter lingkaran yang mempunyai keliling 314 cm !

Diketahui:

Kll = 314 cm

Ditanya:

Jari-jari dan diameter lingkaran!

Penyelesaian:

  • Karena nilai r = 50 cm, sehingga diperoleh
    d = 2 × 50 cm = 100 cm

Jadi, jari-jari lingkaran tersebut adalah 50 cm.

Jadi, diameter lingkaran tersebut adalah 100 cm.

Contoh 6: Cara Mencari Diameter dengan Rumus Jari-Jari Lingkaran jika diketahui Luasnya

Hitunglah jari-jari dan diameter lingkaran yang mempunyai luas 200,96 cm² !

Diketahui:

L = 200,96 cm²

Ditanya:

Jari-jari dan diameter lingkaran!

Penyelesaian:

  • Karena nilai r  = 8 cm, sehingga diperoleh
    d = 2 × 8 cm = 16 cm

Jadi, jari-jari lingkaran tersebut adalah 8 cm.

Jadi, diameter lingkaran tersebut adalah 16 cm.

Tutorial lainnya: Daftar Isi Pelajaran Matematika

Sekian artikel
Rumus Keliling Lingkaran dan Rumus Luas Lingkaran dengan
π
atau d
.
Nantikan artikel menarik lainnya dan mohon kesediaannya untuk share dan juga menyukai Fans Page Advernesia. Terima kasih…

Dalam materi matematika, lingkaran merupakan bangun datar yang memiliki satu sisi lengkung dan membentuk sudut 360 derajat. Jarak setiap titik pada sisi luar lingkaran dengan titik pusat lingkaran adalah sama dan disebut dengan jari-jari (r) atau radius.

Jari-jari sama dengan setengah diameter. Dalam modul pembelajaran oleh Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi (Kemendikbudristek), definisi diameter adalah segmen garis pada lingkaran yang melalui pusat lingkaran.

Dalam bangun lingkaran, keliling lingkaran adalah jarak dari suatu titik pada lingkaran dalam satu putaran hingga kembali ke titik semula. Hasil bagi keliling dengan diameter lingkaran akan diperoleh bilangan yang nilainya akan mendekati 3,14159265358979… dan seterusnya atau disingkat menjadi 3,14 atau dapat juga menggunakan pembagian 22/7 yang disebut pi (π).

Rumus lingkaran dapat digunakan untuk menghitung bagian dalam lingkaran. Simak pembahasan rumus luas dan keliling lingkaran berikut.

Rumus Luas Lingkaran

Lingkaran memiliki bentuk lengkung atau melingkar pada seluruh sisinya. Rumus luas lingkaran adalah L = π x r x r

Keterangan:

L: Luas lingkaran

π: 22/7 atau 3,14

r: Jari-jari lingkaran

Contoh soal:

Sebuah lingkaran memiliki jari-jari 7 cm. Tentukan luas lingkaran tersebut!

Jawaban:

r = 7 cm

Maka luas lingkaran adalah:

L = π x r x r

L = 22/7 x 7 x 7

L = 154 cm2

Adapun rumus luas setengah lingkaran adalah (π x r x r)/2.

Contoh soal:

Sebuah lingkaran memiliki jari-jari 10 cm, maka luas setengah lingkaran adalah…

Jawaban:

Rumus setengah lingkaran adalah (π x r x r)/2. Maka L = (3,14 x 10 x 10)/2 = 157 cm2. Jadi, luas setengah lingkaran tersebut adalah 157 cm2

Rumus Keliling Lingkaran

Sebuah lingkaran membentuk garis lengkung dengan panjang tertentu yang disebut keliling. Rumus keliling lingkaran adalah K = 2 x π x r atau K = π x d

Keterangan:

K: Keliling lingkaran

π: 22/7 atau 3,14

r: Jari-jari lingkaran

Adapun rumus keliling ¾ Lingkaran adalah K = r + r + busur 3/4 lingkaran atau K = 2r + (¾ x π x d)

Contoh soal:

Sebuah lingkaran mempunyai diameter 28 cm maka keliling lingkaran tersebut adalah…

Jawaban:

K = π x d

K = 22/7 x 28

K = 88 cm

Maka, hasil keliling lingkaran adalah 88 cm.

Contoh soal:

Sebuah lingkaran memiliki jari-jari 20 cm, berapa keliling lingkaran tersebut?

Jawaban:

K = 2 x π x r

K = 2 x 22/7 x 20

K = 125,6 cm

Baca Juga

Merujuk pada buku “Matematika Plus” oleh Husein Tampomas, jar-jari lingkaran adalah ruas garis yang menghubungkan suatu titik pada lingkaran dengan titik pusatnya. Jari-jari lingkaran dapat didefinisikan sebagai jarak suatu titik pada lingkaran dengan titik pusatnya.

Perhatikan gambar berikut.

Unsur dan Bagian Lingkaran (Matematika Plus/Penerbit Yudhistira)

Jari-jari lingkaran dilambangkan dengan r atau R. Pada gambar tersebut, ruas garis OA = r, OB = r, dan ON = r adalah jari-jari lingkaran dengan pusat O.

Tali busur adalah ruas garis yang menghubungkan dua titik pada lingkaran. Pada gambar tersebut, ruas garis CD dan AB adalah suatu tali busur. Diameter atau garis tengah adalah tali busur yang melalui titik pusat lingkaran.

Dalam gambar tersebut, ruas garis AB adalah diameter pada lingkaran O. Dalam hal ini, dikatakan bahwa A dan B berhadapan diametral. Diameter lingkaran dilambangkan dengan d atau D. Hubungan jari-jari (r) dan diameter (d) pada suatu lingkaran dirumuskan sebagai berikut:

r = 1/2 d atau d = 2r

Apotema adalah ruas garis yang ditarik dari titik pusat suatu lingkaran tegak lurus pada sebuah tali busur. Dapat disimpulkan bahwa apotema adalah jarak titik pusat lingkaran dengan tali busurnya. Pada gambar, ruas garis OM adalah suatu apotema.

Anak panah adalah ruas garis perpanjangan apotema sampai pada busur lingkaran. Garis MN dalam gambar diatas adalah suatu anak panah.

Baca Juga

Bersumber dari “Buku Ajar Geometri Dan Pengukuran Berbasis Pendekatan Saintifik”, perhatikan gambar berikut.

Ilustrasi Busur, Juring dan Tembereng Lingkaran (Buku Ajar Geometri/Bening Media Publishing)

Garis lengkung AB dinamakan busur lingkaran. Dan daerah yang diarsir disebut sebagai Juring AOB. Sudut yang dibentuk oleh jari-jari OA dan OB dan menghadap ke busur AB dinaman sudut pusat lingkaran.

Tembereng adalah daerah yang dibatasi oleh busur dan tali busur lingkaran. Daerah yang diarsir antara tali busur AB dan busur AB disebut tembereng. LUas tembereng = luas juring AOB – luas segitiga AOB.

Apabila sudut pusat tembereng kurang dari 180 derajat, maka disebut tembereng kecil. Apabila lebih dari 180 derajat, maka disebut tembereng besar.

Sudut Pusat dan Keliling Lingkaran

Sudut pusat adalah sudut yang dibentuk oleh dua buah jari-jari lingkaran. Ukuran sudut pusat sama dengan dua kali sudut keliling. Sedangkan sudut keliling adalah sudut yang terbentuk dari dua buah tali busur yang berpotongan pada keliling sebuah lingkaran.

Sudut keliling lingkaran dibedakan menjadi:

  • Sudut dalam keliling, yaitu sudut yang terjadi jika dua buah tali busur berpotongan di dalam lingkaran.
  • Sudut luar keliling, yaitu sudut yang terjadi jika dua buah tali busur berpotongan di luar sebuah lingkaran.

Baca Juga

Dirangkum dari “Buku Ajar Geometri Dan Pengukuran Berbasis Pendekatan Saintifik”, sifat-sifat lingkaran adalah:

  • Lingkaran adalah suatu bangun datar berupa kurva mulus tertutup.
  • Besar sudutnya adalah 360 derajat.
  • Mempunyai titik pusat.
  • Seluruh jari-jari lingkaran sama panjang.
  • Panjang diameter sama dengan dua kali panjang jari-jari.
  • Jari-jari merupakan ruas garis yang menghubungkan titik pusat ke tepi lingkaran.
  • Simetri lipat dan simetri putar pada lingkaran tidak terhingga.

Demikian ulasan mengenai rumus luas dan keliling lingakaran serta bagian dan sifat lingkaran.

Keliling lingkaran tersebut adalah titik-titik cm

Posted by: pskji.org