Himpunan penyelesaian persamaan 2 sin x π 3 1 untuk 0 ≤ x ≤ π adalah ⋯ ⋅

Himpunan penyelesaian persamaan 2 sin x π 3 1 untuk 0 ≤ x ≤ π adalah ⋯ ⋅

Pembahasan soal
Ujian Nasional (UN)
tingkat SMA bidang studi Matematika IPA dengan pokok bahasan
Persamaan Trigonometri, yaitu menentukan himpunan penyelesaian dari persamaan trigonometri pada suatu interval tertentu.


UN 2017

Himpunan penyelesaian persamaan cos 2x = -cos x untuk 0 ≤ x ≤ 2π adalah … A.   {π/3, π, 5π/3} B.   {2π/3, π, 4π/3} C.   {0, 2π/3, 4π/3, 2π} D.   {0, π/3, 5π/3, 2π} E.   {0, π/3, 4π/3, 2π}

Pembahasan :

cos 2x = -cos x cos 2x + cos x = 0

(2cos2x – 1) + cos x = 0

2cos2x + cos x – 1 = 0 (2cos x – 1)(cos x + 1) = 0 cos x = 1/2  atau  cos x = -1

cos x = 1/2,  0 ≤ x ≤ 2π

Cosinus bernilai positif di Kuadran I dan IV. K.I     →  x = 60° K.IV  →  x = 360° – 60° = 300°

cos x = -1,  0 ≤ x ≤ 2π

→  x = 180° Jadi, HP = {60°, 180°, 300°}  atau  {π/3, π, 5π/3}

Jawaban : A

Baca juga cara konversi satuan derajat ke satuan radian atau sebaliknya dalam materi Satuan Ukuran Sudut : Derajat dan Radian.


UN 2017

Himpunan penyelesaian persamaan 4sin2x – 5sin x – 2 = 2cos2x untuk 0 ≤ x ≤ 2π adalah … A.   {π/6, 5π/6} B.   {π/6, 7π/6} C.   {5π/6, 7π/6} D.   {5π/6, 11π/6} E.   {7π/6, 11π/6}

Pembahasan :

4sin2x – 5sin x – 2 = 2cos2x
4sin2x – 5sin x – 2 = 2(1 – sin2x)
4sin2x – 5sin x – 2 = 2 – 2sin2x
6sin2x – 5sin x – 4 = 0 (3sin x – 4)(2sin x + 1) = 0 sin x = 4/3  atau  sin x = -1/2

sin x = 4/3  →  tidak mempunyai solusi

sin x = -1/2,  0 ≤ x ≤ 2π

Sinus bernilai negatif di kuadran III dan IV. K.III     →  x = 180° + 30° = 210° K.IV     →  x = 360° – 30° = 330° Jadi, HP = {210°, 330°}  atau  {7π/6, 11π/6}

Jawaban : E


UN 2016

Himpunan penyelesaian dari persamaan trigonometri cos 2x + sin x = 0 untuk 0 ≤ x ≤ 360° adalah … A.  {60°, 120°, 150°} B.  {60°, 150°, 300°} C.  {90°, 210°, 300°} D.  {90°, 210°, 330°} E.  {120°, 250°, 330°}

Pembahasan :

cos 2x + sin x = 0 1 – 2sin²x + sin x = 0 2sin²x – sin x – 1 = 0 (2sin x + 1)(sin x – 1) = 0 sin x = -1/2  atau  sin x = 1

sin x = -1/2,  0 ≤ x ≤ 360°

Sinus bernilai negatif di kuadran III dan IV. K.III     →  x = 180° + 30° = 210° K.IV     →  x = 360° – 30° = 330°

sin x = 1,  0 ≤ x ≤ 360°

→  x = 90° Jadi, HP = {90°, 210°, 330°}

Jawaban : D







UN 2015

Himpunan penyelesaian persamaan cos 2x + 3cos x – 1 = 0 pada 0 ≤ x ≤ 360° adalah … A.   {60°, 120°} B.   {60°, 240°} C.   {60°, 300°} D.   {120°, 240°} E.   {120°, 300°}

Pembahasan :

cos 2x + 3cos x – 1 = 0

(2cos2x – 1) + 3cos x – 1 = 0

2cos2x + 3cos x – 2 = 0 (2cos x – 1)(cos x + 2) = 0 cos x = 1/2  atau  cos x = -2

cos x = -2  →  tidak mempunyai solusi

Baca Juga :   Bacalah ilustrasi berikut SMP Harapan Mulia melaksanakan pelantikan ketua OSIS yang baru terpilih

cos x = 1/2,  0 ≤ x ≤ 360°

Cosinus bernilai positif di kuadran I dan IV. K.I    →  x = 60° K.IV  →  x = 360° – 60° = 300° Jadi, HP = {60°, 300°}




Jawaban : C


UN 2014

Himpunan penyelesaian dari persamaan 2cos 3x = 1 untuk 0° ≤ x ≤ 180° adalah … A.   {0°, 20°, 60°} B.   {0°, 20°, 100°} C.   {20°, 60°, 100°} D.   {20°, 100°, 140°} E.   {100°, 140°, 180°}

Pembahasan :

0° ≤ x ≤ 180°  →  0° ≤ 3x ≤ 540° 2cos 3x = 1

cos 3x = 1/2,  0° ≤ 3x ≤ 540°

Cosinus bernilai positif di kuadran I dan IV. K.I    → 3x = 60°  atau  3x = 60° + 1(360°) = 420° K.IV → 3x = 360° – 60° = 300° 3x = 60°    →  x = 20° 3x = 420°  →  x = 140° 3x = 300°  →  x = 100° Jadi, HP = {20°, 100°, 140°}

Jawaban : D


UN 2014

Himpunan penyelesaian dari persamaan 2cos2x + 5sin x – 4 = 0 untuk 0° ≤ x ≤ 360° adalah … A.   {30°, 150°} B.   {30°, 300°} C.   {60°, 150°} D.   {60°, 300°} E.   {150°, 300°}

Pembahasan :

2cos2x + 5sin x – 4 = 0
2(1 – sin2x) + 5sin x – 4 = 0
2 – 2sin2x + 5sin x – 4 = 0
2sin2x – 5sin x + 2 = 0 (2sin x – 1)(sin x – 2) = 0 sin x = 1/2  atau  sin x = 2

sin x = 2  →  tidak mempunyai solusi

sin x = 1/2,  0° ≤ x ≤ 360°

Sinus bernilai positif di kuadran I dan II. K.I     →  x = 30° K.II    →  x = 180° – 30° = 150° Jadi, HP = {30°, 150°}

Jawaban : A


UN 2013

Himpunan penyelesaian persamaan trigonometri cos 2x – sin x = 0 untuk 0° ≤ x ≤ 180° adalah … A.   {30°, 150°} B.   {60°, 120°} C.   {30°, 60°, 150°} D.   {60°, 90°, 120°} E.   {60°, 120°, 150°}

Pembahasan :

cos 2x – sin x = 0

(1 – 2sin2x) – sin x = 0

2sin2x + sin x – 1 = 0 (2sin x – 1)(sin x + 1) = 0 sin x = 1/2  atau  sin x = -1

sin x = 1/2,  0° ≤ x ≤ 180°

Sinus bernilai positif di kuadran I dan II. K.I     →  x = 30° K.II    →  x = 180° – 30° = 150°

sin x = -1,  0° ≤ x ≤ 180°

(tidak ada nilai x yang memenuhi untuk 0° ≤ x ≤ 180°) Jadi, HP = {30°, 150°}

Jawaban : A


UN 2012

Himpunan penyelesaian persamaan cos 4x + 3sin 2x = -1 untuk 0° ≤ x ≤ 180° adalah … A.   {120°, 150°} B.   {150°, 165°} C.   {30°, 150°} D.   {30°, 165°} E.   {15°, 105°}




Pembahasan :

cos 4x + 3sin 2x = -1

(1 – 2sin22x) + 3sin 2x = -1

-2sin22x + 3sin 2x + 2 = 0
2sin22x – 3sin 2x – 2 = 0 (2sin 2x + 1)(sin 2x – 2) = 0 sin 2x = -1/2  atau  sin 2x = 2

sin 2x = 2  →  tidak mempunyai solusi

sin 2x = -1/2 ,  0° ≤ 2x ≤ 360°

Sinus bernilai negatif di kuadran III dan IV. K.III  →  2x = 180° + 30° = 210° K.IV  →  2x = 360° – 30° = 330° 2x = 210°  →  x = 105° 2x = 330°  →  x = 165° Jadi, HP = {105°, 165°}

Baca Juga :   Dalam suatu golongan jari-jari atom unsur

Jawaban : –


UN 2010

Himpunan penyelesaian persamaan sin 2x + 2cos x = 0 untuk 0 ≤ x < 2π adalah … A.   {0, π} B.   {π/2, π} C.   {3π/2, π} D.   {π/2, 3π/2} E.   {0, 3π/2}

Pembahasan :

sin 2x + 2cos x = 0 2sin x cos x + 2cos x = 0 cos x (2sin x + 2) = 0 cos x = 0  atau  sin x = -1

cos x = 0,  0 ≤ x < 2π

→  x = 90°

sin x = -1,  0 ≤ x < 2π

→  x = 270° Jadi, HP = {90°, 270°}  atau  {π/2, 3π/2}




Jawaban : D


UN 2009

Himpunan penyelesaian sin (2x + 110)° + sin (2x – 10)° = 1/2, 0° < x < 360° adalah … A.   {10, 50, 170, 230} B.   {50, 70, 230} C.   {50, 170, 230, 350} D.   {20, 80, 100} E.   {0, 50, 170, 230, 350}

Pembahasan :

sin (2x + 110)° + sin (2x – 10)° = 1/2 Gunakan sifat : sin A + sin B = 2sin\(\mathrm{\left ( \frac{A+B}{2} \right )}\) cos\(\mathrm{\left ( \frac{A-B}{2} \right )}\) pada ruas kiri persamaan diatas, sehingga diperoleh 2sin (2x + 50)° cos 60° = 1/2 2sin (2x + 50)° (1/2) = 1/2 sin (2x + 50)° = 1/2 sin (2x + 50)° = sin 30° Solusi I : 2x + 50 = 30 + k.360 2x = -20 + k.360   x = -10 + k.180 Untuk k = 1  →  x = 170 Untuk k = 2  →  x = 350 Solusi II : 2x + 50 = (180 – 30) + k.360 2x = 100 + k.360   x = 50 + k.180 Untuk k = 0  →  x = 50 Untuk k = 1  →  x = 230 Jadi, HP = {50, 170, 230, 350}

Jawaban : C


UN 2008

Himpunan penyelesaian persamaan cos 2x + 7sin x – 4 = 0, untuk 0 ≤ x ≤ 360° adalah … A.   {240°, 300°} B.   {210°, 330°} C.   {120°, 240°} D.   {60°, 120°} E.   {30°, 150°}

Pembahasan :

cos 2x + 7sin x – 4 = 0

(1 – 2sin2x) + 7sin x – 4 = 0

-2sin2x + 7sin x – 3 = 0
2sin2x – 7sin x + 3 = 0 (2sin x – 1)(sin x – 3) = 0 sin x = 1/2  atau  sin x = 3

sin x = 3  →  tidak mempunyai solusi

sin x = 1/2,  0° ≤ x ≤ 360°

Sinus bernilai positif di kuadran I dan II. K.I   →  x = 30° K.II  →  x = 180° – 30° = 150° Jadi, HP = {30°, 150°}




Jawaban : E


UN 2005

Nilai x yang memenuhi persamaan 2√3 cos2x – 2sin x cos x – 1 – √3 = 0, untuk 0° ≤ x ≤ 360° adalah … A.   {45°, 105°, 225°, 285°} B.   {45°, 135°, 225°, 315°} C.   {15°, 105°, 195°, 285°} D.   {15°, 135°, 195°, 315°} E.   {15°, 225°, 295°, 315°}

Pembahasan :

Acos x + Bsin x = k cos (x – θ) dengan k = \(\sqrt{\mathrm{A^{2}+B^{2}}}\) tan θ = \(\mathrm{\frac{B}{A}}\)  atau  θ = arctan\(\mathrm{\left ( \frac{B}{A} \right )}\)

Catatan
: Sudut θ berada di kuadran yang sama dengan titik (A, B).

2√3 cos2x – 2sin x cos x – 1 – √3 = 0

⇔ 2√3 cos2x – √3 – 2sin x cos x = 1
⇔ √3 (2cos2x – 1) – 2sin x cos x = 1 ⇔ √3 cos 2x – sin 2x = 1   ……………………….(1) Misalkan : √3 cos 2x – sin 2x = k cos (2x – θ) A = √3  dan  B = -1 k = \(\sqrt{(\sqrt{3})^{2}+(-1)^{2}}\) = 2 Karena (A, B) = (√3, -1) berada di kuadran IV maka θ berada di kuadran IV. tan θ = \(\frac{-1}{\sqrt{3}}\) = \(-\frac{\sqrt{3}}{3}\)  →  θ = 330° Diperoleh persamaan √3 cos 2x – sin 2x = 2cos (2x – 330°)   ………(2) Dari persamaan (1) dan (2) diperoleh hubungan 2cos (2x – 330°) = 1 cos (2x – 330°) = 1/2 cos (2x – 330°) = cos 60° Solusi I : 2x – 330° = 60° + k.360° 2x = 390° + k.360°   x = 195° + k.180° Untuk k = -1  →  x = 15° Untuk k = 0   →  x = 195° Solusi II : 2x – 330° = -60° + k.360° 2x = 270° + k.360°   x = 135° + k.180° Untuk k = 0  →  x = 135° Untuk k = 1  →  x = 315° Jadi, HP = {15°, 135°, 195°, 315°}

Baca Juga :   Fungsi Scroll Pada Mouse Yaitu Untuk




Jawaban : D


UN 2004

Himpunan penyelesaian persamaan √6 sin x + √2 cos x = 2, untuk 0° ≤ x ≤ 360° adalah … A.   {15°, 105°} B.   {15°, 195°} C.   {75°, 105°} D.   {75°, 345°} E.   {105°, 345°}

Pembahasan :

√6 sin x + √2 cos x = 2 ⇔ √2 cos x + √6 sin x = 2   …………………….(1) Misalkan : √2 cos x + √6 sin x = k cos (x – θ) A = √2  dan  B = √6 k = \(\sqrt{\left ( \sqrt{2} \right )^{2}+\left ( \sqrt{6} \right )^{2}}\) = 2√2 Karena (A, B) = (√2, √6) berada di kuadran I, maka θ berada di kuadran I. tan θ = \(\frac{\sqrt{6}}{\sqrt{2}}\) = √3  →  θ = 60° Diperoleh persamaan √2 cos x + √6 sin x = 2√2 cos (x – 60°)   ……(2) Dari persaamaan (1) dan (2) diperoleh hubungan 2√2 cos (x – 60°) = 2 cos (x – 60°) = \(\frac{\sqrt{2}}{2}\) cos (x – 60°) = cos 45° Solusi I : x – 60° = 45° + k.360° x = 105° + k.360° Untuk k = 0  →  x = 105° Solusi II : x – 60° = -45° + k.360° x = 15° + k.360° Untuk k = 0  →  x = 15° Jadi, HP = {15°, 105°}

Jawaban : A


UN 2003

Untuk 0° ≤ x < 360°, himpunan penyelesaian dari sin x – √3 cos x – √3 = 0 adalah … A.   {120°, 180°} B.   {90°, 210°} C.   {30°, 270°} D.   {0°, 300°} E.   {0°, 300°, 360°}

Pembahasan :

sin x – √3 cos x – √3 = 0 ⇔ -√3 cos x + sin x = √3   ……………………..(1) Misalkan : -√3 cos x + sin x = k cos (x – θ) A = -√3  dan  B = 1 k = \(\sqrt{\left ( -\sqrt{3} \right )^{2}+\left ( 1 \right )^{2}}\) = 2 Karena (A, B) = (-√3, 1) berada di kuadran II, maka θ berada di kuadran II. tan θ = \(\frac{1}{-\sqrt{3}}\) = \(-\frac{\sqrt{3}}{3}\)  →  θ = 150° Diperoleh persamaan -√3 cos x + sin x = 2cos (x – 150°)   ………….(2) Dari persamaan (1) dan (2) diperoleh hubungan 2cos (x – 150°) = √3 cos (x – 150°) = \(\frac{\sqrt{3}}{2}\) cos (x – 150°) = cos 30° Solusi I : x – 150° = 30° + k.360° x = 180° + k.360° Untuk k = 0  →  x = 180° Solusi II : x – 150° = -30° + k.360° x = 120° + k.360° Untuk k = 0  →  x = 120° Jadi, HP = {120°, 180°}

Jawaban : A




Himpunan penyelesaian persamaan 2 sin x π 3 1 untuk 0 ≤ x ≤ π adalah ⋯ ⋅

Posted by: pskji.org