Perhatikan gambar kubus berikut jika panjang sisi kubus 10 cm, maka panjang diagonal ruang HB adalah

Perhatikan gambar kubus berikut jika panjang sisi kubus 10 cm, maka panjang diagonal ruang HB adalah

Sifat-sifat yang dimiliki oleh kubus hampir sama dengan sifat-sifat yang dimiliki oleh balok. Yang membedakan hanya ukurannya saja. Kubus memiliki sisi yang sama di semua sisinya. Sebelumnya Mafia Online sudah membahas mengenai diagonal bidang, diagonal ruang dan bidang diagonal balok. Pada postingan ini akan membahas tentang diagonal bidang, diagonal ruang dan bidang diagonal.


Diagonal Bidang Kubus

Nama lain dari diagonal bidang adalah diagonal sisi. Diagonal bidang suatu kubus adalah ruas garis yang menghubungkan dua titik sudut yang berhadapan pada setiap bidang atau sisi kubus. Sekarang coba perhatikan bidang ABEF pada gambar kubus ABCD.EFGH di bawah ini.

Ruas garis yang menghubungkan titik sudut B dan E disebut diagonal bidang atau diagonal sisi kubus. Setiap bidang atau sisi pada kubus mempunyai dua diagonal bidang. Karena kubus memiliki 6 bidang sisi, maka kubus memiliki 12 diagonal bidang atau diagonal sisi. Bagaimana cara menghitung panjang diagonal bidang atau diagonal sisi pada kubus?


Diagonal bidang atau sisi dapat ditentukan dengan menggunakan teorema phytagoras. Sekarang perhatikan gambar kuubus di bawah ini.

Misalkan kubus ABCD.EFGH di atas memiliki rusuk s. Maka panjang BE dapat dihitung

dengan menggunakan teorema phytagoras, di mana segitiga ABE siku-siku di A. Sehingga:

BE =


√(AB

2

+ AE2

)


BE =


√(s

2

+ s2

)

BE =


√2s

2


BE =


s√2



M






isalkan diagonal bidang kubus adalah b maka secara umum diagonal bidang kubus

dapat dirumuskan:




b =





s√2


Diagonal Ruang Kubus

Diagonal ruang pada kubus adalah ruas garis yang menghubungkan dua titik sudut yang berhadapan dalam suatu ruang di dalam kubus. Sekarang coba perhatikan gambar berikut di bawah ini.

Garis BH disebut diagonal ruang.


Selain garis BH, ada juga garis AG, garis DF, dan garis CE yang merupakan diagonal ruang kubus.
Diagonal-diagonal ruang tersebut akan berpotongan di satu titik. Suatu kubus memiliki empat buah diagonal ruang yang sama panjang dan berpotongan pada satu titik. Bagaimana menghitung panjang diagonal ruang balok?

Sama seperti mencari diagonal bidang, untuk mencari diagonal ruang juga menggunakan teorema phyagoras. Sekarang perhatikan gambar di bawah ini.


Misalkan kubus ABCD.EFGH di atas memiliki rusuk s. Maka panjang BH dapat dihitung

dengan menggunakan teorema phytagoras. Tetapi sebelum itu harus cari panjang BD, di mana BD merupakan diagonal sisi. Sekarang perhatikan segitiga ABD  siku-siku di A. Sehingga:


BD =


s√2


Sekarang cari panjang BH dengan teorema phytagoras juga.


Sekarang perhatikan segitiga BDH  siku-siku di D. Sehingga:

Baca Juga :   Dalam perspektif politik internasional mengapa HAM perlu dihormati

BH =


√(BD

2

+ DH2

)


BH =










(













s√2








)


2



+ s2

)



BH =










(

2s


2

+ s2



)


BH =





(3
s2
)



BH =


s√3





M






isalkan diagonal ruang kubus adalah d, maka secara umum diagonal ruang kubus

dapat dirumuskan:




d =


s√3




Bidang Diagonal Kubus

Bidang diagonal suatu kubus adalah bidang yang dibatasi oleh dua rusuk dan dua diagonal bidang suatu kubus. Perhatikan balok ABCD.EFGH pada gambar di bawah ini.

Bidang ABGH disebut bidang diagonal. Kubus memiliki enam bidang diagonal yang berbentuk persegi panjang dan tiap pasangnya kongruen. Bagaimana menghitung luas bidang diagonal?

Untuk menghitung luas bidang diagonal dapat menggunakan rumus luas persegi panjang. Sekarang coba perhatikan kembali gambar kubus ABCD.EFGH di atas, jika rusuknya s, maka luas bidang ABGH yakni:

Luas

ABGH = AB . BG

Luas

ABGH = s .



s√2



Luas

ABGH =

s2


√2


Untuk lebih memantapkan pemahaman Anda tentang diagonal bidang, diagonal ruang dan bidang diagonal ruang, silahkan perhatikan contoh soal berikut ini.


Contoh Soal

Sebuah kubus memiliki panjang rusuk 5 cm. Hitunglah panjang diagonal bidang, diagonal ruang dan luas salah satu bidang diagonal kubus tersebut.






Penyelesaian:

Panjang diagonal bidang yakni:



b =





s√2



b =





5√2 cm

Panjang diagonal ruang yakni:



d =





s√3



d =





5√3 cm



Luas bidang diagonal yakni:


Luas

=

s2


√2


Luas

=

(5 cm)2


√2

Luas

=

25



√2


cm2


Kesimpulan:

Karena balok dan kubus memiliki sifat yang hampir sama maka berikut sifat-sifat yang dimiliki oleh kubus juga dimiliki oleh balok. Untuk kubus ABCD.EFGH akan:

  1. Memiliki 6 sisi (bidang) berbentuk persegi yang saling kongruen. Sisi (bidang) tersebut adalah bidang ABCD, ABFE, BCGF, CDHG, ADHE, dan EFGH.
  2. Memiliki 12 rusuk yang sama panjang, yaitu AB, BC, CD, AD, EF, FG, GH, EH, AE, BF, CG, dan DH.
  3. Memiliki 8 titik sudut, yaitu A, B, C, D, E, F, G, dan H.
  4. Memiliki 12 diagonal bidang yang sama panjang, yakni AC, BD, BG, CF, AF, BE, AH, DE, EG, FH, CH, dan DG.
  5. Memiliki 4 diagonal ruang yang sama panjang dan berpotongan di satu titik, yaitu AG, BH, CE, dan DF.
  6. Memiliki 6 bidang diagonal berbentuk persegi panjang yang saling kongruen, di antaranya bidang ACGE, BGHA, AFGD, CDEF, BFHD, dan BEHC.


Demikian postingan Mafia Online tentang diagonal bidang, diagonal ruang dan bidang diagonal kubus serta contoh soal dan pembahasannya. Mohon maaf jika ada kesalahan kata atau perhitungan.

Baca Juga :   Hal Yang Akan Dicapai Atau Dihasilkan Perusahaan Adalah

Rumus volume kubus termasuk materi dasar dalam pembelajaran matematika. Menemukan kapasitas bagun ruang ini sejatinya telah diajarkan sejak kita duduk di bangku sekolah dasar. Karenanya, tak sedikit orang lupa tentang seluk-beluk kubus.

Kubus adalah bangun ruang yang terdiri dari beberapa persegi. Terdapat enam bidang sisi yang berbentuk bujur sangkar. Oleh karena itu, kubus juga sering disebut sebagai bidang enam beraturan. Pemberian nama kubus menurut titik sudutnya, berurutan dari bidang alas ke bidang atas (tutup).

Sementara itu, menurut Kamus Besar Bahasa Indonesia (KBBI), kubus didefinisikan sebagai ruang yang terbatas enam bidang segi empat.

Rumus Volume Kubus

Rumus volume kubus diartikan sebagai isi atau besarnya benda ruang. Rumus volume kubus merupakan perkalian panjang, lebar, dan tinggi kubus. Panjang sisi-sisi dan rusuk kubus adalah sama. Rumus tersebut disusun sebagai berikut:

Rumus volume kubus: V = s x s x s atau V = s3.

Contoh Soal Rumus Volume Kubus

1. Diketahui sebuah kubus mempunyai panjang rusuk 3 cm. Berapa volume kubus tersebut?

Advertising

Advertising

Jawaban:

V = s x s x s

V = 3 x 3 x 3

V = 27

2. Diketahui sebuah kubus mempunyai panjang rusuk 10 cm. Berapa volume kubus tersebut?

Jawaban:

V = s x s x s

V = 10 x 10 x 10

V = 1000

Ciri-ciri Kubus

Sama halnya dengan bangun ruang lain yang memiliki karakteristik dan sifat masing-masing, kubusnya juga memiliki ciri tersendiri. Agar lebih mudah, perhatikan gambar berikut ini:

Rumus volume kubus (Katadata)

  • Memiliki enam sisi dengan panjang yang sama besar setiap sisinya. Berdasarkan gambar di atas maka yang dimaksud dengan sisi kubus yaitu, ABCD, BFGC, EFGH, AEHD.
  • Setiap sisi kubus berbentuk persegi.
  • Memiliki 12 rusuk yang setiap rusuknya sama panjang. Rusuk adalah garis persekutuan atau perpotongan antara dua sisi. Berdasarkan gambar di atas maka yang dimaksud rusuk kubus yaitu AB, BC, CD, DA, EF, FG, GH, HE, DH, AE, BF, dan CG.
  • Memiliki total 8 titik sudut. Berdasarkan gambar di atas maka yang dimaksud titik sudut yaitu A, B, C, D, E, F, G, H.
  • Memiliki 12 sisi diagonal sisi yang sama panjang. Memiliki 4 diagonal ruang yang sama panjang.
  • Memiliki beberapa bentuk jaring-jaring kubus. Jaring-jaring kubus adalah kubus yang sebagian rusuknya digunting. Seluruh sisinya direbahkan sehingga menjadi bangun datar. Kubus memiliki bangun yang sesuai dengan cara mengguntingnya.
  • Memiliki volume dan luas permukaan .

Unsur Pembentuk Kubus

  • Sisi atau bidang: Sisi kubus adalah bidang yang membatasi kubus. Ada enam buah sisi yang berbentuk persegi ABCD (sisi bawah), EFGH (sisi atas), ABFE (sisi depan), CDHG (sisi belakang) BCGF (sisi samping kiri), dan ADHE (sisi samping kanan).
  • Rusuk: Rusuk kubus merupakan garis potong antara dua sisi bidang kubus dan terlihat seperti kerangka yang menyusun kubus. Sisi kubus memiliki sama luas satu sama lain. Kubus ABCD.EFGH memiliki 12 buah rusuk yaitu AB, BC, CD, DA, EF, FG, GH, HE, AE, BF, CG, dan DH.
  • Titik sudut: Titik sudut kubus merupakan titik potong antara dua rusuk kubus ABCD.EFGH yang memiliki 8 buah titik sudut yaitu titik A,B,C,D,E,F,G, dan H.
  • Diagonal : Selain sisi, rusuk, dan titik sudut pada diagonal. Ada tiga diagonal kubus yaitu diagonal bidang, diagonal ruang, dan bidang diagonal.
  1. Diagonal bidang: Kubus ABCD.EFGH terdapat garis AF yang menghubungkan kedua titik sudut yang saling berhadapan dalam satu sisi atau bidang. Ruas garis ini dinamakan diagonal bidang.
  2. Diagonal ruang: Kubus ABCD.EFGH memiliki ruas garis HB yang menghubungkan dua titik sudut yang saling berhadapan dalam satu ruang. Ruas garis itu disebut diagonal ruang.
  3. Bidang diagonal: Pada kubus ABCD.EFGH memiliki dua buah diagonal bidang yaitu AC dan EG. Diagonal bidang AC dan EG beserta dua rusuk kubus yang sejajar, yaitu AE dan CG membentuk suatu bidang diagonal di dalam ruang kubus yaitu bidang ACGE.
Baca Juga :   Sebutkan Hal Hal Yang Perlu Diperhatikan Dalam Membuat Reklame

Rumus Luas Permukaan Kubus

Luas permukaan adalah jumlah permukaan yang memiliki satuan jarak kuadrat, atau secara sederhana dapat digambarkan dengan jumlah luas pada permukaan sebuah objek.

Perlu diingat, satuan dari luas permukaan tidak mutlak dalam meter (m), biasanya mengikuti permintaan dari soal, jika soal minta dalam satuan cm, maka di hitung dalam cm.

Berdasarkan ciri-ciri yang telah disebutkan sebelumnya, dapat disimpulkan bahwa kubus terdiri dari 6 persegi yang disusun menjadi sebuah bangun ruang. Oleh karena itu luas permukaan dari kubus secara sederhana bisa dikatakan sama dengan 6 x luas persegi.

Contoh Soal Luas Permukaan

1. Sebuah kubus memiliki panjang sisi 10 cm. Hitunglah luasnya!

Jawab:

Diketahui : s = 10 cm

Ditanya : Luas permukaan?

L = 6 x s2

L = 6 x 10 x 10

L = 600 cm2

Luas permukaan kubus adalah 600 cm2.

2. Sebuah kubus yang memiliki panjang sisi 24 cm. Berapa luas permukaan kubus tersebut?

Jawab:

Diketahui:

S = 24 cm

Ditanya : Luas permukaan?

L = 6 x s2

L = 6 x 24 x 24

L = 3.456 cm2

Luas permukaan kubus adalah 3.456 cm2.

Perhatikan gambar kubus berikut jika panjang sisi kubus 10 cm, maka panjang diagonal ruang HB adalah

Posted by: pskji.org